Least restrictive supervisors for intersection collision avoidance: A scheduling approach

Alessandro Colombo, Member, IEEE, and Domitilla Del Vecchio, Member, IEEE

Abstract—We consider a cooperative conflict resolution problem that finds application, for example, in vehicle intersection crossing. We seek to determine minimally restrictive supervisors, which allow agents to choose all possible control actions that keep the system safe, that is, conflict free. This is achieved by determining the maximal controlled invariant set, and then by determining control actions that keep the system state inside this set. By exploiting the natural monotonicity of the agents dynamics along their paths, we translate this problem into an equivalent scheduling problem. This allows us to leverage existing results in the scheduling literature to obtain both exact and approximate solutions. The approximate algorithms have polynomial complexity and can handle large problems with guaranteed approximation bounds. We illustrate the application of the proposed algorithms through simulations in which vehicles crossing an intersection are overridden by the supervisor only when necessary to maintain safety.

Index Terms—Maximal controlled invariant set, multi-agent system, safety, verification, scheduling, supervisory control, collision avoidance, intersection.

I. INTRODUCTION

Transportation systems are increasingly relying on communication technologies and automated control in order to make driving safer and more enjoyable [1]. A particular area of focus is the design of driver assist systems that use vehicle to vehicle and/or vehicle to infrastructure communication to prevent collisions at traffic intersection [2]–[6]. Two key requirements of these systems are that they must guarantee collision-free intersection crossing (safety), while intervening as little as possible (least restrictiveness). The latter requirement is especially important in ground transportation since drivers are expected to be in control of their vehicles at all times and overrides are acceptable only in case of extreme danger. At the same time, algorithms that determine whether drivers’ desired actions are safe and provide a set of possible safe controls must be computationally efficient, since they must run in real-time in the presence of a potentially large number of vehicles.

Typically, least restrictive sets of control actions are determined by calculating the maximal (safe) controlled invariant set and the least restrictive feedback map that keeps the system inside this set. The maximal controlled invariant set is the largest set of states (with respect to set inclusion) for which there exists an input that avoids conflicts at all positive times. Determining the maximal controlled invariant set is often a computationally difficult problem, and has been proved to be NP-hard in the case of some collision avoidance problems [7], [8]. A number of exact algorithms have been proposed, whose application to systems with more than a few agents is not practical [5], [9]–[20]. Some of these results are applicable only to the two-agent conflict resolution problem [5], [16], [18], and the others have exponential complexity in the size of the state space. Hence, research has been focusing on methods to approximate the maximal controlled invariant set with more efficient algorithms [21]–[23]. In many cases, even the termination of the algorithm that computes the maximal controlled invariant set is not guaranteed, and work has been done to identify classes of systems that allow to prove termination [24], [25].

In this paper, we design least restrictive supervisors for collision avoidance at traffic intersections. Our algorithms do not return a specific control action, and are not intended to optimize a performance metric, but rather to determine the largest set of (infinite horizon) control actions that avoid any conflict. We propose a new paradigm for the design of least restrictive supervisors that leverages the distinctive structure of the application to obtain exact and approximate algorithms for collision avoidance at intersections involving an arbitrary number of agents. Specifically, we exploit the fact that agents evolve unidirectionally along their paths through an intersection (Fig. 1) and that they have (nonlinear) monotone dynamics [26]. Under these assumptions, we demonstrate that determining whether a state belongs to the maximal controlled invariant set—which we call the verification problem (VP)—is equivalent to solving a scheduling problem (SP) [27]. While VP is defined over a function space, SP requires a search over a finite set of strings; it is thus simpler to handle. We then leverage and adapt results from the scheduling literature to determine exact and approximate solutions to the verification problem, and we use the solution of the verification problem to synthesize a least restrictive supervisor. This supervisor leaves the agents freedom of choice unless such a choice will compromise safety at some future time. We provide algorithmic procedures, which are guaranteed to terminate, that solve the verification problem. Approximate solutions use algorithms with polynomial complexity and can be efficiently used for real-time control of systems involving a large number of vehicles.
agents. Tight approximation bounds are provided to measure the difference between the approximate solution and the exact one.

There is an extensive literature on conflict resolution [28]–[36] and on probabilistic conflict prediction [37]–[39]. The papers on conflict resolution address problems that are close to the one tackled here, but with the following significant differences. The algorithms developed in [28], [29], [31]–[36] can handle more than two agents, however they do not provide a least restrictive solution, which is instead provided by our algorithms. The algorithms in [30] are based on a mixed integer linear programming formulation, potentially suitable to compute least restrictive solutions. However, their complexity scales exponentially in the number of agents, limiting their application to systems with a small number of vehicles.

Our approach instead allows to derive approximate solutions with polynomial complexity and a guaranteed approximation bound, which can be applied to very large systems. The approach we follow was first proposed in [8], but while that work assumed a single agent on each path, here we allow an arbitrary number of agents on each path and take care of rear-end collisions of agents on the same path as well as of side-impacts of agents from different paths. As a consequence, the results discussed here solve a much more complex supervisory problem.

The paper is organised as follows. In Section II, we introduce the model and VP. In Section III, we introduce some scheduling concepts and terminology, and we provide some basic results that will be used throughout the paper. These results will set the bases to decouple the (hard) problem of deciding in which order agents can cross the intersection from the (easy) problem of choosing how they can cross it once the order is fixed. Section IV contains the main results: we introduce SP; we prove equivalence of VP and SP; and we provide an exact and an approximate solution to SP. Section V uses these solutions for the synthesis of a least restrictive supervisor. Section VI presents an application example.

II. SYSTEM DEFINITION AND PROBLEM STATEMENT

We consider conflict resolution problems such as the one depicted in Fig. 1. We model agents as point masses moving along a specified path and governed by Newton’s law:

\[\ddot{x}_i = f_i(x_i, u_i), \]

(1)

with \(i \in \{1, \ldots, n\} \), where \(x_i \in X_i \subseteq \mathbb{R} \) is the position and \(u_i \in U_i \subseteq \mathbb{R}^m \) is the control input. We use the following notation throughout the paper. The symbols \(x_i \) and \(u_i \) are used both for signals (functions of time) and signal values (vectors in a Euclidean space). When the dependence of \(x_i \) on the input needs to be made explicit, we write \(x_i(u_i) \). The value of \(x_i \) at time \(t_0 + t \) starting from \((x_i(t_0), \dot{x}_i(t_0)) \), with input \(u_i \in [t_0, t_0 + t] \), is denoted \(x_i(t, u_i, x_i(t_0), \dot{x}_i(t_0)) \). The same notation is used for \(\ddot{x}_i \). When the initial state is not important we use the shorter notation \(x_i(t, u_i) \) and \(\ddot{x}_i(t, u_i) \). Boldface \(x \) and \(u \) denote the vectors \((x_1, x_2, \ldots), (u_1, u_2, \ldots) \), while \(u'_i \) denotes the \(j \)-th component of vector \(u_i \).

We call \(U \) the set of input signals \(u \), and we assume that it contains at least the piecewise smooth functions with a finite number of discontinuities. Given a signal \(u_i \), we write \(u_i \geq u_i' \) if \(u_i(t) \geq u_i'(t) \) for all \(j \) and for all \(t \geq 0 \), and \(u_i > u_i' \) if \(u_i(t) > u_i'(t) \) for all \(j \) and for all \(t \geq 0 \) and there exists at least one \(j \) such that \(u_i(t) > u_i'(t) \) for all \(t > 0 \). Similarly, given a vector \(u_i \), let \(u_i \geq u_i' \) if \(u_i \geq u_i' \) for all \(j \), and \(u_i > u_i' \) if \(u_i > u_i' \) for all \(j \) and there exists at least a \(j \) such that \(u_i > u_i' \). The same notation is used for \((x_i, \dot{x}_i) \).

We make the following assumptions:

(A.1) \(U \) has a unique minimum \(u_{i,min} \) and a unique maximum \(u_{i,max} \) in the order \(\geq \) defined above, and \(f_i(x_i, u_i) \) is non-decreasing in \(u_i \).

(A.2) system (1) has unique solutions, depending continuously on initial conditions and parameters.

(A.3) \(\ddot{x}_i \) is bounded to a strictly positive interval \([\ddot{x}_{i,min}, \ddot{x}_{i,max}]\) with nonempty interior (agents always move forward).

(A.4) \(f_i(x_i, u_i) \) is bounded for all \(x_i \in [\dddot{x}_{i,min}, \dddot{x}_{i,max}], u_i \in U_i \).

(A.5)

\[
\lim_{t \to \infty} \ddot{x}_i(t, u_{i,min}) = \dddot{x}_{i,min} \\
\lim_{t \to \infty} \ddot{x}_i(t, u_{i,max}) = \dddot{x}_{i,max}
\]

(min and max velocities are attained at least asymptotically by applying \(u_{i,min} \) and \(u_{i,max} \)).

(A.6) dynamics of agents on the same path are identical, i.e., \(f_i = f_j \), \([u_{i,min}, u_{i,max}] = [u_{j,min}, u_{j,max}]\), \([\dddot{x}_{i,min}, \dddot{x}_{i,max}] = [\dddot{x}_{j,min}, \dddot{x}_{j,max}]\).

Before proceeding, we briefly comment on the above assumptions. As shown in [26], (A.1) implies that

\[
(x_i(0), \ddot{x}_i(0)) \geq (x'_i(0), \ddot{x}'_i(0)) \quad \forall u_i \geq u_i',
\]

(3)

while the following monotonicity property follows easily:

\[
(x_i(0), \ddot{x}_i(0)) \succ (x'_i(0), \ddot{x}'_i(0)) \quad \forall u_i \geq u_i' \Rightarrow x_i \succ x'_i.
\]

(4)

This means that, if agent \(i \)'s position and velocity are not smaller than those of agent \(j \), and agent \(i \) applies an input not smaller than that of agent \(j \), then the ordering between the two agents is preserved. Our model therefore belongs to the class of monotone systems [26]. This is a natural assumption given the physics of the problem. Assumption (A.3) requires that the dynamics of (1) make the interval \([\dddot{x}_{i,min}, \dddot{x}_{i,max}]\) invariant irrespective of the input (note that (1) is not required to be smooth, so saturation is allowed). Positive minimum velocity is not a restrictive assumption, given the problem at hand, since all agents that can stop before the intersection avoiding a rear end collision can be removed from the verification problem. Finally, (A.6) implies that, if agents \(i \) and \(j \) are on the same path and \((x_i(0), \ddot{x}_i(0)) = (x'_j(0) + d, \ddot{x}_j(0))\) for some \(d \in \mathbb{R} \), then \(x_i(t, u_i) + d = x'_j(t, u_j) \) for all \(t \geq 0 \) provided \(u_i = u_j \). This fact is used in some of the proofs to ensure the existence of a safe input on an infinite horizon once agent \(i \) is tailing agent \(j \). This assumption may be relaxed to the cost of significantly complicifying some of the proofs.

Let \(I \) be the set of all non-ordered pairs of indices \(i \in \{1, \ldots, n\} \). To represent the fact that two agents can be on either the same or on different paths, we partition \(I \) in the two sets...
In this section, we introduce some concepts of Scheduling Theory, define some function sets for the inputs of (1), and prove some properties of these sets that are needed in the following sections.

A. Notions of Scheduling Theory

A scheduling problem consists of assigning to a number of jobs a schedule, that is, a vector of execution times, while satisfying given constraints [27]. Job i is represented by the symbol J_i. If a precedence constraint holds between two jobs, that is, if J_i must be executed before J_j, we write $J_i < J_j$. Adopting the formalism of complexity theory, we write scheduling problems in the form of decision problems, which have a yes or no solution [40]. When a decision problem P maps an instance I to the solution yes we say that it accepts the instance, denoted $I \in P$. In particular, the results presented here use a special form of the following decision problem:

Definition 1 ($1|\text{prec}|\text{max}$). Given a set of n jobs to be run on a single machine, with release times $r_i \in \mathbb{R}_+$, deadlines $d_i \in \mathbb{R}_+$, and durations $p_i \in \mathbb{R}_+$, and a set of precedence constraints, determine if there exists a schedule $T = (T_1, \ldots, T_n) \in \mathbb{R}_+^n$ such that, for all $i \in \{1, \ldots, n\}$, $r_i \leq T_i \leq d_i - p_i$, and for all $i \neq j$, $T_i \geq T_j \Rightarrow T_i \geq T_j + p_j$, and $J_i < J_j \Rightarrow T_i \leq T_j$.

Figure 2 shows three schedules for an instance of the above problem. $1|\text{prec}|\text{max}$ was shown to be NP-Complete in [41]. It has, however, a polynomial-time exact solution, first proposed in [42], when all job durations p_i are identical. This case can always be transformed, by normalisation of the data, into the case where jobs have duration 1, denoted $1|\text{prec}, p_i = 1|\text{max}$.

One of the main results of the paper is a proof of equivalence of two decision problems. Here, equivalence is meant in the sense used in complexity theory [40]:

Definition 2. A problem P_1 is reducible to a problem P_2 if for every instance I of P_1 an instance I' of P_2 can be constructed in polynomial-bounded time, such that $I \in P_1 \Rightarrow I' \in P_2$. In this case, we write $P_1 \propto P_2$. If $P_1 \propto P_2$ and $P_2 \propto P_1$ then we say that P_1 and P_2 are equivalent, denoted $P_1 \simeq P_2$.

B. Function Spaces

Here we introduce three sets of input signals and prove some of their properties. The crucial properties are in Theorems 1 and 3. We attach a preorder “≺” [43] to each set. We denote the maximum and minimum of a set in the preorder “≺” by “max≺” and “min≺”, respectively. All proofs of this section are collected in Appendix A. From here until the end of Section IV, we deal with solutions of (1) for fixed initial conditions $(x(0), \dot{x}(0))$ and for fixed parameters Θ. Hence, for the sake of brevity, the dependence of all objects on $(x(0), \dot{x}(0))$ and Θ is omitted.

The order of agents along a path imposes constraints on the order in which agents can reach the intersection. Considering the task of letting an agent through the intersection as a job to be executed on a machine, we represent these constraints as a set of precedence constraints on the jobs, writing $J_i < J_j$ if job i must be executed before job j, that is, if $x_i(0) > x_j(0)$ and $(i, j) \in I_\prec$. The set of all precedence constraints defines a directed acyclic graph with the jobs as nodes, and a corresponding topological order (the order of the nodes along a directed path). We say that a vector $T \in \mathbb{R}_+^n$ has elements in topological order if $T_i \leq T_j$ whenever $J_i < J_j$. We say that agent j is the predecessor of agent i if j is such that $J_j < J_i$ and $J_k < J_j$ for all $k \neq j$ such that $J_k < J_i$. In other words, the predecessor of i is the agent immediately preceding i in the topological order. This is denoted $J_j \preceq J_i$. If i has no predecessor, we write $0 \preceq J_i$. Given an assignment of indices to agents we say that these are numbered in topological order if, for all $(i, j) \in I_\prec$, $j < i$ implies $J_j < J_i$, in reverse topological order if $j < i$ implies $J_j > J_i$.

Definition 3. U is the set of input signals $u \in U$ such that $x(t, u) \notin B_-$ for all $t \geq 0$.

![Fig. 2. Three schedules for $1|\text{prec}|\text{max}$ with $r = [1.5, 2, 3, 5], d = [6, 6, 6, 5], p = [1.5, 0.5, 1],$ and $J_2 < J_1$. Schedule 1 is not feasible because J_1 terminates after its deadline. Schedule 2 is not feasible because the order of J_1 and J_2 violates a precedence constraint. Schedule 3 is feasible.](image-url)
This is the set of all input signals that avoid rear-end collisions. We define the preorder \(\preceq_i \) on the components \(u_i \) of \(u \in U \) by writing \(u_i \preceq_L u_i' \) if \(x_i(u_i) \leq x_i(u_i') \) and we say that \(u \preceq_L u' \) if the above relation holds for all \(i \in \{1, \ldots, n\} \). \(U \) has the following property.

Theorem 1. If \(U \neq \emptyset \), then it has a minimum in the preorder \(\preceq_L \).

A minimum of \(U \) is a lowest control input that the agents can apply without causing a rear-end collision. It is not necessarily \(u_{i,\min} \), as this could cause a rear-end collision for any possible input of the successor. Notice that, even though minima of \(U \) do not have to be unique, the corresponding position trajectory is unique. This is a simple consequence of the definition of \(\preceq_L \).

Assume that \(U \neq \emptyset \). Given \(u \in \min_{\preceq_L} U \), a vector \(T := (T_1, \ldots, T_n) \), and \(x(0) := (x(0), u) \), define the constraints

\[
x_i(0) \leq a_i \Rightarrow x_i(t, u_i) \leq a_i \quad \forall t \leq T_i, \quad (5)
\]

\[
J_j \ll J_i \Rightarrow x_i(t, u_i) \leq x_j(t, u_j) - d \quad \forall t \geq 0, \quad (6)
\]

\[
x_i(t, u_i) \geq x_i(t) \quad \forall t \geq 0. \quad (7)
\]

Constraint (5) requires that, if agent \(i \) is behind \(a_i \) at \(t = 0 \), then it remains behind \(a_i \) at least until \(t = T_i \). Constraint (6) requires that an agent and its predecessor respect a safety distance \(d \). Constraint (7) requires that each agent maintain a trajectory not lower than the one obtained with \(u \). Note that (7) is redundant when (6) is satisfied by all agents. It is nonetheless used in the definition of the input set \(U_i(T_i) \) which follows.

Definition 4. Given a vector \(T \in \mathbb{R}^n \) (a schedule), and given \(x(0) \), we let

- \(U(T) \) be the set of input signals \(u \in U \) such that all components of \(x(T,u) \) satisfy (5) and (6);
- \(U_i(T_i) \) be the set of inputs \(u_i \in U_i \) that satisfy (5), (6), and (7). We denote by \(U_i(T_0, T_i) \) the same set when \(i \) has no predecessor, and we write \(U_i(T_i) \) when we need to refer to both cases. If \(U = \emptyset \), then \(x \in (7) \) is not defined. In this case, we let \(U_i(T_i) = \emptyset \).

The set \(U(T) \) contains all the inputs that agents can use without violating (5) and (6). Notice that \(U(T) \subseteq U \), since any input satisfying (6) for all \(i \) satisfies \(x(T,u) \notin B \) for all \(t \geq 0 \). We attach a preorder to the above sets, as follows. For all \(u_i, u'_i \in U_i(T_i) \), we write \(u_i \preceq_{U_i} u'_i \) if \(x_i(t, u_i) \leq x_i(t, u'_i) \forall t \geq T_i \), and we say that \(u \preceq_{U} u' \) if the above relation holds for all \(i \in \{1, \ldots, n\} \). We now address the existence of maxima of \(U(T) \) and, to do so, we first establish the existence of maxima of \(U_i(T_i) \). Simply put the following lemma states that, provided there exists at least one collision-free input, the set \(U_i(T_i) \) of agent \(i \) is guaranteed to have a maximum in the preorder \(\preceq_{U_i} \). If \(i \) has a predecessor \(j \) (an agent driving in front) such a maximum cannot be increased without increasing \(u_j \). The lemma assumes that agent \(j \) ultimately applies \(u_{j,\text{max}} \) and concludes that \(i \) can also ultimately apply \(u_{i,\text{max}} \) allowing to apply the result iteratively to construct maxima for all agents.

Lemma 2. Consider agent \(i \). If it has a predecessor \(j \), assume \(u_j = u_{j,\text{max}} \) for all \(t \geq t_f \) for some finite \(t_f \geq 0 \). Assume \(U \neq \emptyset \) and \(U_i(T_i) \neq \emptyset \). Then \(U_i(T_i) \) has maxima in the preorder \(\preceq_{U_i} \), and for every maximum \(u \), there exists a finite \(t_f' \) such that \(u(t) = u_{i,\text{max}} \) for all \(t \geq t_f' \).

Moreover, if \(i \) has predecessor \(j \), then \(u' \preceq_{U_{i}} u_{j,\text{max}} \) for all \(t \geq T_i \). Algorithm 1 computes a maximum of \(U_i(T_i) \) considering elements of \(U_i(T_i) \) of the form

\[
U_i(t_{i,1}, t_{i,2}, t_{i,3}) := \begin{cases} u_i \text{ if } t < \min(t_{i,1}, t_{i,3}) \\ u_{i,\text{max}} \text{ if } t \in [\min(t_{i,1}, t_{i,3}), \min(t_{i,2}, t_{i,3})] \\ u_{i,\text{min}} \text{ if } t \in [\min(t_{i,2}, t_{i,3}), t_{i,3}] \\ u_j \text{ if } t > t_{i,3}. \end{cases}
\] (8)

The structure of the above input follows from the proof of Lemma 2 (in the Appendix). In the algorithm the function \(\text{Root} F(\gamma) \) returns a positive root of the equation \(F(\gamma) = 0 \). If \(\text{Root} F(\gamma) \) finds no positive solution the algorithm aborts, for the sake of brevity, this is not stated explicitly in the pseudocode; in this case \(U_i(T_i) \) is empty. We assume that if \(i \) has a predecessor \(j \), then \(u_j \) has already been computed; this is ensured by processing agents in topological order.

Theorem 3. If \(U(T) \neq \emptyset \), then it has a maximum in the preorder \(\preceq_{U} \). Moreover, if the components of a vector \(u \in U \) satisfy the recursive relation

\[
\begin{align*}
\emptyset & \ll J_i \Rightarrow u_i \in \min_{\preceq_U} U_i(T_i), \\
J_j & \ll J_i \Rightarrow u_i \in \min_{\preceq_U} U_i(T_i),
\end{align*}
\] (9)

then \(u \in \min_{\preceq_U} U(T) \).

The above result implies that the problem of finding a maximum of \(U(T) \) has an optimal substructure [40], that is, we can compute an optimal solution iteratively by solving a set of simpler optimization problems. Thus, finding a maximum of \(U(T) \) is no harder than finding a maximum of \(U_i(T_i) \). Here lies the keystone of the paper: once a feasible schedule \(T \) has been found, finding a maximum of \(U(T) \), and hence an input signal satisfying VP, is a simple task. The complexity of VP is entirely due to finding \(T \). This is the matter of the following section.

IV. MAIN RESULTS

A. Formal Statement of SP and Equivalence of VP and SP

In Section III, we defined the sets \(U \) and \(U(T) \) and proved that they have a minimum and a maximum, respectively. Here, we use these minima and maxima to define the scheduling quantities \(R_i, D_i, \) and \(F_i \), that are necessary to formalise SP. All proofs are collected in Appendix B.

Let \(t_\alpha(u) := \min \{ t \geq 0 : x_i(t, u_i) \geq \alpha \} \), that is, \(t_\alpha(u) \) is the earliest time when \(x_i \) becomes greater than or equal to \(\alpha \). Such \(t_\alpha(u) \) exists since \(\bar{x}_i \) is positive and bounded away from 0. As before, let \(\mathbf{u} \) denote an element of \(\min_{\preceq_L} U \). The
Algorithm 1 Compute a maximum of $\mathcal{U}_d(\cdot, T_i)$

1: if $x_i(0) \leq a_i$ then
2: $\alpha \leftarrow \min(x_i(T_i, u_i, m_{x_i}), a_i)$
3: $\tau_i \leftarrow \text{Root } F(\gamma) := x_i(T_i, u_i, \gamma, T_i, \infty) - \alpha$
4: if i has no predecessor, or j is predecessor of i and $x_i(t, u_j) \geq x_j(t, u_i, \tau, \infty) + d \forall t \geq 0$ then
5: $\bar{u}_i \leftarrow u_i, \tau, \infty$.
6: end collisions, if it does not pass
7: $\text{Dist} \leftarrow \min_{j < i} \{ x_j(t, u_j) - x_i(t, u_i, \tau, \gamma, T_i) - d \}$
8: $\tau^*_2 \leftarrow \text{Root } F(\gamma) := x_i(T_i, u_i, \gamma, T_i, \infty) - \alpha$
9: $\text{Dist} \leftarrow \min_{j > i} \{ x_j(t, u_j) - x_i(t, u_i, \tau^*_2, \infty) - d \}$
10: if $\text{Dist} \geq 0$ then $\tau^*_2 \leftarrow \text{Root } F(\gamma) := x_i(T_i, u_i, \gamma, T_i, \infty) - \alpha$
11: end collisions, if it does not pass
12: $\min \{ x_j(t, u_j) - x_i(t, u_i, \gamma, \gamma, T_i) - d \}$
13: $\tau^* \leftarrow \text{Root } F(\gamma) := x_i(T_i, u_i, \gamma, T_i, \infty) + d$
14: $\bar{u}_i \leftarrow u_i, \tau, \infty$.
15: else $\text{Dist} \leq 0$ then $\tau^* \leftarrow \text{Root } F(\gamma) := x_i(T_i, u_i, \gamma, T_i, \infty) + d$
16: $\min \{ x_j(t, u_j) - x_i(t, u_i, \gamma, \gamma, T_i) - d \}$
17: $\tau^*_2 \leftarrow \text{Root } F(\gamma) := x_i(T_i, u_i, \gamma, T_i, \infty) + d$
18: $\bar{u}_i \leftarrow u_i, \tau, \infty$.
19: else $\text{Dist} \leq 0$ then $\tau^*_2 \leftarrow \text{Root } F(\gamma) := x_i(T_i, u_i, \gamma, T_i, \infty) + d$
20: $\min \{ x_j(t, u_j) - x_i(t, u_i, \gamma, \gamma, T_i) - d \}$
21: $\bar{u}_i \leftarrow u_i, \tau, \infty$.
22: else $\text{Dist} \leq 0$ then $\tau^*_2 \leftarrow \text{Root } F(\gamma) := x_i(T_i, u_i, \gamma, T_i, \infty) + d$
23: $\min \{ x_j(t, u_j) - x_i(t, u_i, \gamma, \gamma, T_i) - d \}$
24: $\bar{u}_i \leftarrow u_i, \tau, \infty$.
25: end collisions, if it does not pass
26: $\bar{u}_i \leftarrow u_i, 0, \infty, \infty$.
27: else $\text{Dist} \leq 0$ then $\tau^*_2 \leftarrow \text{Root } F(\gamma) := x_i(T_i, u_i, \gamma, T_i, \infty) + d$
28: $\min \{ x_j(t, u_j) - x_i(t, u_i, \gamma, \gamma, T_i) - d \}$
29: $\tau^*_2 \leftarrow \text{Root } F(\gamma) := x_i(T_i, u_i, \gamma, T_i, \infty) + d$
30: $\bar{u}_i \leftarrow u_i, 0, \tau, \infty$.
31: return \bar{u}_i.

Looking at the scheduling problem in Definition 1, we see that R_t plays the role of a release time, D_t of a deadline, and $P_t - T_t$ of a job duration. The precedence constraints of Definition 1 are here a consequence of (13) and the definition of P_t. The main difference with respect to a standard scheduling problem is that, here, the duration $P_t - T_t$ is a function of the schedule T. Notice that instances of Problems VP and SP are described by the same tuple $\{ (x(0), \dot{x}(0)) , \Theta \}$. According to Definition 2, this means that the mapping between instances of the two problems is the identity, and in order to prove equivalence it suffices to show that $\{ (x(0), \dot{x}(0)) , \Theta \}$ SP if and only if $\{ (x(0), \dot{x}(0)) , \Theta \} \in VP$. We thus reach one of our main results.

Theorem 4. VP \simeq SP.

B. Exact Solution of VP

By Theorem 1 a solution of VP, which is defined over a function space, can be found by solving SP, whose search space is the set of all the possible orderings of agents through the intersection, and is therefore finite. Here we propose an enumerative solution of SP, and we start by further reducing the size of the search space by means of the following Lemma.

Lemma 5. If SP accepts an instance, then it is satisfied by a schedule T with elements T_i in topological order, that is, such that $J_j \ll J_i \Rightarrow T_j \leq T_i$.

This result enables us to restrict the search to schedules in topological order. Furthermore, given a candidate order of jobs J_i in topological order, if a schedule is feasible, then in particular the one that satisfies (13) tightly is feasible, i.e., the one such that $T_i \geq T_j \Rightarrow T_i = P_j(T)$. Such a schedule is uniquely determined once the order of jobs has been chosen. Therefore, the search space coincides with the set \mathcal{P} of all possible permutations of the indices $1, \ldots, n$ that satisfy the topological order $(J_i < J_j \Rightarrow j < i)$. The procedure $\text{EXACT}\text{SOLUTION}$ in Algorithm 2 solves SP exactly by performing an exhaustive search in \mathcal{P}. We denote by $\pi \in \mathcal{P}$ a permutation of indices and by $\pi(i)$ the i-th index in the permutation. With some abuse of notation, in the procedure we write $\dot{P}_i \leftarrow \dot{b}_i(\max_{\mathcal{U}_d} \mathcal{U}_d(\cdot, T_i))$ as a short form of $u_i \in \max_{\mathcal{U}_d} \mathcal{U}_d(\cdot, T_i)$. The abbreviation should cause no confusion, since as we noted before, all maxima of $\max_{\mathcal{U}_d} \mathcal{U}_d(\cdot, T_i)$ give the same trajectory for $t \geq T_i$, and therefore the same value of b_i. The state $\dot{x}(0), \dot{x}(0))$ is in the maximal controlled invariant set if and only if $\text{EXACT}\text{SOLUTION}$ finds a feasible schedule. If a feasible schedule is found, the input $u_i \in \max_{\mathcal{U}_d} \mathcal{U}_d(\cdot, T_i)$ constructed at lines 6 and 21 of Algorithm 2 is a safe input for $\{ x(0), \dot{x}(0) \}$.

Example 1 (Execution of Algorithm 2). Consider three identical agents on two paths. Model the agents’ longitudinal dynamics as a linear double integrator with saturation, so that
the vector field in (1) takes the form

\[f_i(x, u) = \begin{cases}
 u_i & \text{if } (x_i < \dot{x}_{i,max} \text{ and } u_i > 0) \\
 (\dot{x}_i > \dot{x}_{i,min} \text{ and } u_i < 0)
\end{cases} \]

with \(\dot{x}_{i,min} = 1, \dot{x}_{i,max} = 10, u_{i,min} = -1, u_{i,max} = 1, a_i = 15, b_i = 16, \text{ and } d = 1 \). Assume \(x_1(0) = 0, x_2(0) = 4, x_3(0) = 0, \text{ and } x_4(0) = 1 \) for all agents, and let agents 1 and 2 be on the same path. The initial conditions imply that \(J_2 \ll J_1 \).

We have that \(u_j(t) = -1 \) for all \(t \geq 0 \), for all \(i \). Assume that Algorithm 2 is testing the permutation \([2, 1, 3]\). The values of \(R_i \) and \(D_i \) are, respectively, \(R_i \approx 4.57, 3.80, 4.57 \) and \(D_i = 15, 11, 15 \). Lines 7-5 of Algorithm 2 assign \(T_2 \approx 3.80, \bar{u}_2 = 1, \bar{P}_2 = 4 \). Then, agent 1 has agent 2 as predecessor. Line 12 of Algorithm 2 assigns \(T_1 \approx 4.57 \). To compute the assignment at Lines 15 and 16, we use Algorithm 1. All roots in Algorithm 1 can be found analytically, since the vector field can be integrated explicitly. We find that \(\tau_1 = 0 \) at line 3 and \(x_2(t, u_{2,max}) \geq x_1(t, u_{1,max}) + d \), so that the assignment at Line 5 of Algorithm 1 sets \(\bar{u}_1 = 1 \) for all \(t \geq 0 \). This gives \(P_1 \approx 4.74 \). Finally, Lines 10, 21, and 22 of Algorithm 2 assign \(T_3 \approx 4.74, \bar{u}_3(t) = 0 \) for \(t \in [0, 0.22], \bar{u}_3(t) = u_{3,max} \) for \(t > 0.22 \), and \(P_3 \approx 4.92 \). We thus obtain \(T = [4.57, 3.80, 4.74] \), which verifies the test at Line 25.

The search space, and hence the running time of the procedure \textsc{ExactSolution} in Algorithm 2, scales as the multinomial coefficient \((n_1, n_2, \ldots)! := n!/n_1!n_2! \ldots \) where \(n_i \) is the number of agents on path \(i \) and \(\sum_i n_i = n \). For an effective, online approach applicable to large systems we need to seek an approximate solution.

C. Approximate Solution of VP

The results in the previous section provide a means to determine membership in the maximal controlled invariant set exactly. However, the complexity of the algorithm renders the computation impractical in the presence of a large number of agents. Here, we exploit the equivalence of VP and SP to construct an approximate solution with polynomially bounded running time, and we provide an upper bound for the error introduced by the approximation. Specifically, we use Garey's exact solution [42] of 1\textsc{r}, \textsc{prec}, \textsc{p}_i = 1\textsc{l}\textsc{max} (this is the scheduling problem of Definition 1 with unit time jobs) to solve an approximate version of SP. Let \textsc{PolynomialTime} be a procedure that solves 1\textsc{r}, \textsc{prec}, \textsc{p}_i = 1\textsc{l}\textsc{max}. The idea is to define a time \(\delta_{max} \) long enough so that any agent is able to cross the interval \([a_i, b_i] \) in at most \(\delta_{max} \), and allocate this fixed amount of time to each agent.

To begin with, consider the quantity

\[d_i^* := \inf\{\alpha \in \mathbb{R} : \alpha \geq x_j(0) + d \leq x_j(0), x_i(0) = x_{i,max}, x_j(0) = x_{j,min}, (i, j) \in \mathcal{L}\} \]

This is the minimum distance that two agents on the same path must have, at any given time, to avoid a rear end collision if the agent in front has velocity \(\dot{x}_{j,min} \) and the one in the back has velocity \(\dot{x}_{i,max} \). Then, call

\[\tau_i(\alpha) := \inf\{t \geq 0 : x_i(t, u_{i,max}) \geq \alpha \} \in (T_i, T_{i+1}) \]

This is the minimum time taken to reach \(\max\{b_i, a_i + d_i^*\} \) by an agent that starts at position \(\alpha \) with minimum velocity, using input \(u_{i,max} \). Finally, call

\[\delta_{max} := \max_{i \in \{1, \ldots, n\}} \tau_i(\alpha). \]

We can now define the approximation \textsc{SP*} of SP:

**SP*. Given initial conditions \((x(0), \dot{x}(0)) \), determine if there exists a schedule \(T = (T_1, \ldots, T_n) \in \mathbb{R}_+^n \) such that, for all \(i, \)

\[R_i \leq T_i \leq D_i, \]

for all \((i, j) \in \mathcal{L}_+ \), if \(T_j = 0 \) and \(x_j(0) < b_i \) then \(T_i \geq T_j \Rightarrow T_i \geq T_j \), (18)

for all \((i, j) \in \mathcal{L}_- \) if \(T_j = 0 \) then

\[J_j < J_i \Rightarrow T_i \geq T_j \geq \delta_{max} \]

and

\[J_j < J_i \Rightarrow T_i \geq T_j. \]

Note that, by (16), \(T_j = 0 \) if and only if \(x_j(0) \geq a_j \). Constraints (16) and (17) are the same as in SP. Constraint (18) states that, if \(i \) and \(j \) are on the same path and \(j \) lies at or after \(a_j \), then agent \(i \) is not allowed in the intersection before \(j \) has passed the points \(b_j \) and \(a_j + d_j^* \). Constraint (19) states that, if \(i \) and \(j \) lie before \(a_i \) and \(a_j \), respectively,
then their scheduled time of arrival must be spaced at least \(\delta_{\text{max}} \) apart. Finally, Constraint (20) requires that schedules be in topological order. An exact solution to the above problem is found by Algorithm 3. In the pseudocode, without loss of generality, we assume that \(x_i(0) \geq a_i \) for \(i = 1, \ldots, m \), and \(x_i(0) \leq c_i \) for \(i = m + 1, \ldots, n \). \(P_j(0) \) at Line 7 stands for \(P_j(T) \) with \(T_i = 0 \) for all \(i \).

Algorithm 3 Solution of SP*

1. procedure APPROXIMATE_SOLUTION(\(x(0), x(0), \Theta \))
2. for all \(i \in \{1, \ldots, m\} \) do given \(x_i(0) \) calculate \(R_i, D_i \)
3. if \(x_i(0) \in [a_i, b_i) \) and \(x_j(0) \in [a_j, b_j) \) for some \((i, j) \in I_+ \) or \(D_i < R_j \) for some \(i, j \) then
4. return \(\{0, \text{no}\} \)
5. for all \(i \in \{m + 1, \ldots, n\} \) do
6. return \(\{0, \text{no}\} \)
7. \(R_i \leftarrow \max \{\max_{j \leq m(i, j) \in I_+} \{P_j(0)\}, \max_{j \leq m(i, j) \in I_-} \{\tau_j\}, R_i\} \)
8. set \(\delta_{\text{max}} \) as in (15)
9. \(r = \{R_0, \delta_{\text{max}} + 1, \ldots, R_n, \delta_{\text{max}} + 1\} \)
10. \(d = (D_0, \delta_{\text{max}} + 1, \ldots, D_n, \delta_{\text{max}} + 1) \)
11. \(\{T_0 = 0, \ldots, T_m, \text{answer}\} = \text{POLYNOMIAL_TIME}(r, d, \text{prec}) \)
12. for \(i = m + 1 \rightarrow n \) do \(T_i \leftarrow T_i, \delta_{\text{max}} \)
13. return \(\{T, \text{answer}\} \)

Example 2. Consider the system in Example 1. We can compute \(d_i^+ \) and \(\delta_{\text{max}} \) explicitly, obtaining \(d_i^+ = 21.25 \) and \(\delta_{\text{max}} \approx 5.60 \). All agents have \(x_i(0) < a_i \), therefore \(R_i = R_i \), in Algorithm 3 while, as we have seen in Example 1, \(R_i \approx \{4.57, 3.80, 4.57\} \) and \(D_i = \{15.11, 15.10\} \). The vectors \(r \) and \(d \) obtained by dividing \(R \) and \(D \) by \(\delta_{\text{max}} \) are \(r \approx [0.82, 0.68, 0.82] \) and \(d \approx [2.68, 1.97, 2.68] \). The procedure POLYNOMIAL_TIME finds the feasible schedule \(T \approx [2.68, 0.68, 1.68] \), which corresponds to \(T \approx [15.00, 3.80, 9.40] \).

We say that SP* is an approximation of SP if any schedule that is feasible for SP* is feasible also for SP.

Theorem 6. SP* is an approximation of SP.

By this theorem, APPROXIMATE_SOLUTION can be used to check membership in the maximal controlled invariant set, but it underestimates its size. The extent of this underestimation depends on the choice of \(\delta_{\text{max}} \). The following theorem provides a measure of the extent of the underestimation. First, define the sets \(B_+ := \{x : \exists (i, j) \in I_+, x_i \in [a_i, a_i + \delta_{\text{max}}x_{max}], x_j \in [a_j, a_j + \delta_{\text{max}}x_{max}] \} \) and \(B_- := \{x : \exists (i, j) \in I_-, x_i \leq x_j \leq \gamma_{\text{max}}x_{max} \} \) and define the extended bad set

\[
\hat{B} := B_+ \cup B_-.
\]

The extended bad set is thus a superset of the bad set. In Theorem 7 we prove that if APPROXIMATE_SOLUTION returns “no” then, for all \(u \in U \), trajectories intersect \(\hat{B} \) (i.e., \(\hat{B} \) is an upper bound of the overestimation of \(B \)), then in Theorem 8 we prove that \(\hat{B} \) cannot be made any smaller (i.e., \(\hat{B} \) is a tight upper bound).

Theorem 7. If for a given \((x(0), \hat{x}(0))\) APPROXIMATE_SOLUTION returns “no”, then for all \(u \in U \) there exists a \(t \geq 0 \) such that \(x(t, u) \in \hat{B} \).

Now define the sets \(B_+ := \{x : \exists (i, j) \in I_+, x_i \in [a_i, a_i + \gamma_{\text{max}}x_{max}], x_j \in [a_j, a_j + \gamma_{\text{max}}x_{max}] \} \) and \(B_- := \{x : \exists (i, j) \in I_-, x_i - x_j \leq \gamma_{\text{max}}x_{max} \} \) and let \(\bar{B} := B_+ \cup B_- \).

Theorem 8. If \(\gamma + 1 < 1 \) then there exists a tuple \((x(0), \hat{x}(0), \Theta)\) such that APPROXIMATE_SOLUTION returns “no” and, for at least one \(u \in U \), \((x(t, u), \Theta) \notin \bar{B} \) for all \(t \geq 0 \).

V. SYNTHESIS OF A SAFETY-ENSURING SUPERVISOR

Here, we use the results of the previous sections to construct a supervisor for (1) to keep the system within the maximal controlled invariant set. Proofs can be found in Appendix C.

Given a discretization of time of step \(\tau \), we design the supervisor as a map \(s(x(k\tau), \hat{x}(k\tau), v_k) \rightarrow u_k \) for all \(k \in \mathbb{N} \). The map takes a “desired” input \(v_k \in U := \{U_1, \ldots, U_n\} \) for the time interval \([k\tau, (k+1)\tau]\), and returns a signal \(u_k(t) = v_k \) for all \(t \in [k\tau, (k+1)\tau] \) if this maintains the state of the system within the maximal controlled invariant set, or a safe signal otherwise. Since all quantities here are evaluated at multiple time steps, the initial state \((x(k\tau), \hat{x}(k\tau))\) is explicitly included among the arguments of the trajectories. Let \(v_k \) denote the desired input at time \(k\tau \). Consider the two signals \(u_k \) and \(u_k^\infty \) defined as follows: the first one is defined on the interval \([k\tau, (k+1)\tau]\) and identically equal to \(v_k \); the second one is an element of \(U \) defined on \([k\tau, \infty) \), and such that \(u_k^\infty(t) = u_k(t) \) when \(t \in [k\tau, (k+1)\tau] \). Additionally, given \((x(k\tau), \hat{x}(k\tau))\), call \(u_k^\infty \) \in \(U \) a control signal such that \(x(t, u_k^\infty, \hat{x}(k\tau)) \notin B \) for all \(t \geq k\tau \) (if such control exists), and call \(u_k^\infty \) the restriction of \(u_k^\infty \) to the interval \([k\tau, (k+1)\tau]\). If \(u_k^\infty \) does not exist, let \(u_k^\infty = \emptyset \). The supervisor design problem is formally stated as follows

Problem 1. Design a supervisor \(s(x(k\tau), \hat{x}(k\tau), v_k) \) such that

\[
s(x(k\tau), \hat{x}(k\tau), v_k) = \begin{cases} u_k & \text{if } \exists u_k^\infty(t) \in U : \forall t \geq 0 \\{x(t, u_k^\infty, \hat{x}(k\tau)) \notin B \} \\text{otherwise.} \end{cases}
\]

The above supervisor overrides the desired input \(v_k \) whenever this will cause a collision at some future time. Moreover, it has the following property.

Proposition 9. The supervisor \(s(x(k\tau), \hat{x}(k\tau), v_k) \) defined above is nonblocking, i.e., if \(u_k := s(x(k\tau), \hat{x}(k\tau), v_k) \neq \emptyset \) and \(x_{k+1} = x(t, u_k, x(k\tau), \hat{x}(k\tau)) \), \(x_{k+1} = \hat{x}(t, u_k, x(k\tau), \hat{x}(k\tau)) \), then for any \(v_{k+1} \), \(\{x_{k+1}, x_{k+1}, v_{k+1}\} \neq \emptyset \).

This ensures that at all times \(k\tau \), and for all desired inputs \(v_k \), the supervisor returns a collision-free input.

Given a system of the form (1) and the state \((x(k\tau), \hat{x}(k\tau))\) at some time \(k\tau \), the procedure EXACT_SOLUTION returns a binary value \((yes/no)\), and a schedule \(T \). We can use this information to design the supervisor in Problem 1. Assume that, at \(t = 0 \), we have EXACT_SOLUTION \((x(0), \hat{x}(0), \Theta) = \{T_0, yes\}\). Define \(u_{k, \text{safe}} = u(x(0), \hat{x}(0), T_0) \), where \(u(x(0), \hat{x}(0), T_0) \in \langle T_0 \rangle \), and we have explicitly written the initial conditions for clarity. Define \(u_{k, \text{safe}} \) as the restriction
of \(u_{0,\text{safe}}^{\infty} \) to the time interval \([0, \tau]\). At each iteration \(k = 0, 1, 2, \ldots \), the supervisor map \(s(x(k\tau), \dot{x}(k\tau), v_k) \) is defined in Algorithm 4.

Algorithm 4 Implementation of the supervisor map

1: procedure \(s(x(k\tau), \dot{x}(k\tau), v_k) \)
2: \(\bar{u}(t) \leftarrow v_k \forall t \in [k\tau, (k+1)\tau] \)
3: \(x_{k+1} \leftarrow x((k+1)\tau), \bar{u}, x(k\tau), \dot{x}(k\tau) \)
4: \(\dot{x}_{k+1} \leftarrow \dot{x}((k+1)\tau), \bar{u}, x(k\tau), \dot{x}(k\tau) \)
5: \(\{T, \text{answer}\} \leftarrow \text{EXACTSOLUTION}(x_{k+1}, x_{k+1}, \Theta) \)
6: if \(\text{answer} = \text{yes} \) and \(x(t, u) \notin B \) for all \(t \in [k\tau, (k+1)\tau] \) then
7: return \(\bar{u} \)
8: else
9: \(\{T, \text{answer}\} \leftarrow \text{EXACTSOLUTION}(x(k\tau), \dot{x}(k\tau), \Theta) \)
10: \(u_{k,\text{safe}}^{\infty} \leftarrow \bar{u}(x(k\tau), \dot{x}(k\tau), T) \)
11: \(u_{k,\text{safe}}^{\infty} \leftarrow u_{k,\text{safe}}^{\infty} \text{restricted to } [k\tau, (k+1)\tau] \)
12: return \(u_{k,\text{safe}}^{\infty} \)

Theorem 10. Assume that \(s(x(0), \dot{x}(0), v_0) \neq \emptyset \). Then, the supervisor defined by Algorithm 4 solves Problem 1.

Algorithm 4 uses EXACTSOLUTION, whose running time scales polynomially with the number of agents. Therefore, it can be applied only to relatively small problems. To obtain a supervisor that scales polynomially with the number of controlled agents, we substitute EXACTSOLUTION with APPROXIMATESOLUTION at lines 5 and 9 of the algorithm. The approximate supervisor, denoted \(s_{\text{approx}}(x(k\tau), \dot{x}(k\tau), v_k) \), can handle much larger systems, at the expense of a more restrictive behaviour. The following result quantifies the restrictiveness of \(s_{\text{approx}} \). Consider the extended bad set \(\tilde{B} \) defined in (21). Call \(\tilde{s}(x(k\tau), \dot{x}(k\tau), v_k) \) the supervisor defined in Problem 1 substituting \(\tilde{B} \) to \(B \).

Theorem 11. \(s_{\text{approx}}(x(k\tau), \dot{x}(k\tau), v_k) \) is no more restrictive than \(\tilde{s}(x(k\tau), \dot{x}(k\tau), v_k) \), that is, if \(s_{\text{approx}}(x(k\tau), \dot{x}(k\tau), v_k) = u_{k,\text{safe}}^{\infty} \) then \(\tilde{s}(x(k\tau), \dot{x}(k\tau), v_k) = u_{k,\text{safe}}^{\infty} \). Moreover if \(s_{\text{approx}}(x(0), \dot{x}(0), v_0) \neq \emptyset \) then \(s_{\text{approx}} \) is nonblocking as defined in Proposition 9.

Thus \(s_{\text{approx}} \) enforces safety and has polynomial complexity in the number of agents, and its performance can be rigorously compared against that of the optimal supervisor.

VI. EXAMPLE

We have tested the supervisory algorithms described in Section V on a set of vehicles governed by the equation

\[
\ddot{x}_i = \begin{cases}
 u_i - 0.005(\dot{x}_i)^2 & \text{if } \dot{x}_i > \dot{x}_{i,\text{min}} \text{ and } u - 0.005(\dot{x}_i)^2 \leq 0 \\
 \dot{x}_i & \text{if } \dot{x}_i < \dot{x}_{i,\text{max}} \text{ and } u - 0.005(\dot{x}_i)^2 \geq 0 \\
 0 & \text{otherwise,}
\end{cases}
\]

(22)

where the input term \(u_i \) is the net effect of the motor’s torque and rolling resistance on the vehicle acceleration, while the quadratic term accounts for air drag [44]. The above system satisfies Assumptions (A.1)-(A.6). We have used the following parameters for all vehicles: \(b_1 = a_1 = 10m, \dot{x}_{i,\text{min}} = 1.39m/s, \dot{x}_{i,\text{max}} = 13.9m/s, u_{i,\text{min}} = -2m/s^2, u_{i,\text{max}} = 2m/s^2, d = 5m. \) This gives \(d_{i}^2 \simeq 21.998m \) and \(\delta_{\text{max}} \simeq 4.135s. \)

Algorithm 4 was implemented numerically with \(\tau = 0.2s. \) Trajectories were discretized with time step 0.1s. All simulations were executed on a 2.4Ghz Intel core 2 Duo, 4Gb ram. Figure 3 shows a portion of the capture set (complement of the maximal controlled invariant set) in the space of the positions, for fixed velocities, for 3 agents on 3 paths. In Fig. 4 we show the trajectories of three pairs of agents travelling along 3 paths. In the top panel we use the supervisor with procedure EXACTSOLUTION. Notice that agents on different paths (trajectories in different colours) enter the intersection (in gray) as soon as the preceding agent has left it. EXACTSOLUTION was executed, in this configuration, in less than 0.38s. The bottom panel shows the same system and initial conditions, controlled using procedure APPROXIMATESOLUTION. APPROXIMATESOLUTION was executed, in this configuration, in less than 0.028s. Finally, Fig. 5 depicts the trajectories of 30 vehicles moving along 3 different paths, controlled using procedure APPROXIMATESOLUTION. APPROXIMATESOLUTION was executed in less than 0.17s.
Proposition 12. Let \(u_i^t, u_i^f \in U_i \), and let \(u_i(t) := u_{\text{max}} \) for all \(t \in [t_1, t_2] \). Then \(x_i(t_1, u_i^t) \geq x_i(t_1, u_i^f), x_i(t_2, u_i^t) \geq x_i(t_2, u_i^f) \) \(\Leftrightarrow \) \(x_i(t, u_i^t) \geq x_i(t, u_i^f) \forall t \in [t_1, t_2] \).

Proposition 13. Let \(u_i^t, u_i^f \in U_i \), and let \(u_i(t) := u_{\text{min}} \) for all \(t \in [t_1, t_2] \). Then \(x_i(t_1, u_i^t) \leq x_i(t_1, u_i^f), x_i(t_2, u_i^t) \leq x_i(t_2, u_i^f) \) \(\Leftrightarrow \) \(x_i(t, u_i^t) \leq x_i(t, u_i^f) \forall t \in [t_1, t_2] \).

The following proposition states that, given two agents \(i \) and \(j \) with \(i \) initially in front, and provided that \(i \) ultimately constantly accelerates and \(j \) ultimately constantly brakes (so that their trajectories are guaranteed to split asymptotically), if one can find a pair of inputs \(u^t \) and \(u^f \) such that \(u^t \) is collision-free while \(u^f \) causes a violation of the safety distance on some time interval, then there exists a third input \(u^m \) which is collision-free and allows the agents to reach the same velocity and a distance of exactly \(d \) at some time \(t_f \).

Proposition 14. Let \(u_{i,\alpha} \in U_i, u_{j,\beta} \in U_j \) be two families of inputs, parametrised in \(\alpha \in A \) and \(\beta \in B \), and assume that there exists a finite \(t_s \geq t_0 \) such that \(u_{i,\alpha}(t) = u_{\text{max}} \) and \(u_{j,\beta}(t) = u_{\text{min}} \) for all \(t \geq t_0 \). Assume that \(x_i(t, u_{i,\alpha}) \) and \(x_j(t, u_{j,\beta}) \) depend continuously on the parameters \(\alpha \in A \) and \(\beta \in B \), where \(A \) and \(B \) are path connected. Let \(i, j \) be two agents with identical dynamics, and take \(d \geq 0 \). If there exists a pair \((\alpha', \beta') \in A \times B \) such that \(x_i(t, u_{i,\alpha'}) \geq x_j(t, u_{j,\beta'}) + d \) for all \(t \geq 0 \) (i.e., \(i \) drives strictly in front of \(j \)), and a pair \((\alpha'', \beta'') \in A \times B \) such that \(x_i(t, u_{i,\alpha''}) < x_j(t, u_{j,\beta''}) + d \) for some finite \(t \) (i.e., \(i \) and \(j \) violate the safety distance \(d \)), then there exists a pair \((\alpha''', \beta''') \in A \times B \) such that \(x_i(t, u_{i,\alpha''}) \geq x_j(t, u_{j,\beta''}) + d \) for all \(t \geq 0 \) (i.e., \(i \) drives in front of \(j \)) and \(x_i(t, u_{i,\alpha''}) \) is tangent to \(x_j(t, u_{j,\beta''}) + d \) at some finite \(t_f \) (i.e., \(i \) and \(j \) achieve the same velocity and a distance of exactly \(d \) at time \(t_f \)).

Proof: Given a path from \((\alpha', \beta')\) to \((\alpha'', \beta'')\) in parameter space, and given that \(u_{i,\alpha}(t) = u_{\text{max}} \) and \(u_{j,\beta}(t) = u_{\text{min}} \) for all \(t \geq t_s \) and \(x_{\text{max}} \) is assumed strictly greater than \(x_{\text{min}} \). (A.5) ensures that \(x_i(t, u_{i,\alpha}) > x_j(t, u_{j,\beta}) - d \) for all \(t \geq t_f \) \(\geq t_s \) for some \(t_f \) sufficiently large, for all pairs \((\alpha, \beta)\) along the path. Then, the intermediate value theorem applied to the function \(\min_{t \in (0, t_f)} \{ x_i(t, u_{i,\alpha}) - x_j(t, u_{j,\beta}) - d \} \) of \((\alpha, \beta)\) ensures the existence of a pair \((\alpha''', \beta''')\) such that \(\min_{t \in (0, t_f)} \{ x_i(t, u_{i,\alpha''}) - x_j(t, u_{j,\beta''}) - d \} = 0 \). Differentiability of \(x_i(t, u_{i,\alpha''}) \) and \(x_j(t, u_{j,\beta''}) \) in \(t \), and \(\min_{t \in (0, t_f)} | x_i(t, u_{i,\alpha''}) - x_j(t, u_{j,\beta''}) - d | = 0 \) over the open interval \(t \in (0, t_f) \) imply that \(x_i(t, u_{i,\alpha''}) \) and \(x_j(t, u_{j,\beta''}) + d \) are tangent at some \(t_f \).}

The following continuity property of the solutions of (1) is a consequence of (A.2) and (A.4). Consider a set \(U_0, \ldots, U_r \) of continuous signals in \(U \). Let \(\tau_0 = 0 \), let \(\tau_0 < \tau_1 < \ldots < \tau_r \) be a finite sequence of real numbers, and let \(u_{m,\ldots,\tau_r} \) be an input signal equal to \(u_k \), \(k \in \{0, \ldots, r-1\} \), for \(t \in [\tau_k, \tau_{k+1}] \), and equal to \(u_r \) for \(t \geq \tau_r \).

Lemma 15. For every \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that, if \(|\tau_k - \tau_l| < \delta \forall k \neq l \), then \(\| x(t, u_{m,\ldots,\tau_r}) - x(t, u_{m,\ldots,\tau_l}) \| \leq \epsilon \forall t \in [0, \tau_l] \).

We can now prove Theorem 1. The proof is constructive and based on induction. It consists in showing that, given a known minimum trajectory for the successor \(j \) of \(i \), the minimum trajectory of \(i \) can be constructed with an input consisting of a braking phase (where \(u_{\text{min}} \) is applied) followed by an acceleration phase (where \(u_{\text{max}} \) is applied). Using Proposition 14 such a trajectory is shown to reach a point where agent \(i \) precedes \(j \) at a distance of exactly \(d \) and has the same speed as
\textbf{Proof of Theorem 1: } Since the inequality conditions defining B_n only involve pairs of agents on the same path, the set \mathcal{U} is the cross product of a number of sets equal to the number of paths, each set containing trajectories that do not intersect the restriction of B_n to the corresponding subspace. Thus, we can prove the theorem by dealing with one path at a time. Consider all agents along a path in reverse topological order, indexed from 1 to n where n is the number of agents on the path. By (3), and since U_1 is bounded, $u_{i,t}^\alpha(t) := u_{i,\text{min}}$ for all $t \geq 0$ is the unique input minimizing $x_i(t,u_i)$ for all $t \geq 0$. Therefore, it is the first component of all vectors in $\min_{\leq \mathcal{U}} \mathcal{U}$. For all following agents, we construct the components of $\min_{\leq \mathcal{U}} \mathcal{U}$ inductively, using the above as the base case. Assume the component $i-1$ of $\min_{\leq \mathcal{U}} \mathcal{U}$ is known, and call it u_{i-1}. Assume also that there exists some $t_f > 0$ such that $u_{i-1}(t) = u_{i,\text{min}}$ for all $t \leq t_f$. Let $x_{i-1}(t) := x_{i-1}(t,u_{i-1})$. Consider the family $u_{i,\tau}$ of inputs with elements $u_{i,\tau}(t) := \left\{u_{i,\text{min}} \right\}$ if $t<\tau$, $u_{i,\text{max}}$ if $t>\tau$ for all $\tau \in \mathbb{R}_+$. $u_{i,\tau}$ is a totally ordered family of inputs according to the above order. By (3), inputs in $u_{i,\tau}$ generate a totally ordered set of position trajectories which, by Lemma 15, depend continuously on τ. If, for all $u_{i,\tau}$, $x_i(t,u_{i,\tau}) \geq x_{i-1}(t) + d$, then $u_{i}(t) := u_{i,\text{min}}$ for all $t \geq 0$ is the unique input minimizing $x_i(t,u_i)$ for all $t \geq 0$ while satisfying $x_i(t,u_i) \geq x_{i-1}(t) + d$. Therefore, it is the component i of $\min_{\leq \mathcal{U}} \mathcal{U}$, and $u_{i}(t) = u_{i,\text{min}}$ for all $t \geq 0$. Otherwise, since $\mathcal{U} \neq \emptyset$, it must be that $x_i(t,u_{i,\text{opt}}) \geq x_{i-1}(t,u_{i-1}) + d$ for all $t \geq 0$, while $x_i(t,u_{i,\tau}) < x_{i-1}(t,u_{i-1})$ for some $t \geq 0$, for τ sufficiently large. Therefore we can use Proposition 14, with $u_{i,\alpha} = u_i$, $u_{i,\beta} = u_{i-1}$, and $t_0 = 0$ to show that there exists τ_{opt} such that $x_i(t,u_i,\tau_{\text{opt}}) \geq x_{i-1}(t,u_{i-1}) + d$ for all $t \geq 0$ and $x_i(t,u_{i,\tau}) \leq x_{i-1}(t,u_{i-1})$ for all $u_i \in \mathcal{U}$. This is ensured in the interval $[0,t_0]$ by (3) (since we are using $u_i = u_{i,\text{min}}$ for all $t \leq t_0 < \tau_{\text{opt}}$, and in the interval $[t_0,\infty)$ by the constraint $x(t) \in B_\mathcal{U} = \emptyset$ (since any $x_i(t)$ below $x(t)$ would lie below $x_{i-1}(t) + d$). If instead $t_0 \geq \tau_{\text{opt}}$, by Proposition 12 with $t_1 = \tau_{\text{opt}}$, $t_2 = t_0$, we have $x_i(t,u_i) \leq x_i(t,u_{i,\tau})$ for all $u_i \in \mathcal{U}$ and for all $t \in [\tau_{\text{opt}},t_0]$. The inequalities in the rest of the real line are proved as before.

\textbf{Sketch of proof of Lemma 2: } We need to prove that

\begin{enumerate}
\item \(\exists \bar{u}_i \in \mathcal{U}_i(T) : u_i \preceq \bar{u}_i \forall u_i \in \mathcal{U}_i(T)\),
\item \(J_j \ll J_i, u_j \preceq \bar{u}_i \forall u_j \in \mathcal{U}_i(T), u_i \preceq \bar{u}_i \forall u_i \in \mathcal{U}(u_j, T_j)\)
\end{enumerate}

\begin{equation}
\text{ if } u_i \preceq \bar{u}_i \forall u_i \in \mathcal{U}(u_j, T_j), \text{ then } u_i \preceq u_i \forall u_i \in \mathcal{U}_i(T) \text{ (3)}
\end{equation}

\begin{enumerate}
\item \(u_i(t) = u_{i,\text{max}} \forall t \geq t_f > 0\)
\end{enumerate}

In the case $x_i(t) \leq a_i$, we introduce the family of inputs U_{a+b+c} sketched in Fig. 6. This is a set of inputs of the form

\begin{equation}
u_i := \begin{cases} u_i & \forall t \in [0,\tau_1] \\ u_{i,\text{max}} & \forall t \in (\tau_1,\tau_2) \\ u_{i,\text{min}} & \forall t > \tau_2 \end{cases}
\end{equation}

where τ_2 spans the interval $[0,\infty]$, while τ_1 is defined as a different function in the three subsets U_a, U_b, U_c. In U_c, τ_2 takes all values in $[T_1,\infty]$, while τ_1 is constant and selected so that the trajectory reaches a_1 exactly at T_1, or $\tau_1 = 0$ if $x(T_1, u_{i,\text{max}}) < a_1$. In U_a, τ_2 takes all values in $[T_2,\text{min} , T_1]$ and τ_1 is a function of τ_2 such that the trajectory reaches a_1 exactly at T_1, τ_2 is the least value of τ_2 which allows the trajectory to reach a_1 at T_1, and the corresponding value of τ_1 is 0. If $x(T_1,u_{i,\text{max}}) < a_1$, then b_0 is empty and τ_2 is T_2. In U_c, $\tau_1 = 0$ while τ_2 takes all values in $[0,\tau_{2,\text{min}}]$.

It can be proven that the above family has these properties:

\begin{enumerate}
\item \(U_1\) is totally ordered and has a maximum ($\tau_1 \leq T_1, \tau_2 = \infty$) and a minimum ($\tau_1 = \tau_2 = 0$) in the preorder \(\succeq\).
\item \(U_2\) if \(u_i := \min_{\leq \mathcal{U}} U_{a+b+c}\), then $x_i(u_i)$ is the unique input minimizing $x_i(t,u_i)$ for all $t \geq t_i$.
\item \(U_3\) of values of τ_1, τ_2 representing inputs in U_{a+b+c} form a path connected set.
\item \(U_4\) for all $u_i' \in U_{a+b+c}$ and for all $u_i'' \in U$ that satisfy (5), $x_i(u_i', u_i'') > x_i(u_i, u_i'') \Rightarrow x_i(u_i', u_i'') > x_i(u_i, u_i'') \forall t \geq t_e$.
\end{enumerate}

In the case $x_i(0) \geq a_i$, we consider instead a family

\begin{equation}
U_d := \bigcup_{t \geq 0} \left\{ u_i \in U_i : \begin{cases} u_i := u_i, \forall t \in [0,\tau_1] \\ u_i := u_{i,\text{max}} & \forall t \in (\tau_1,\tau_2) \\ u_i := u_{i,\text{min}} & \forall t > \tau_2 \end{cases} \end{equation}

which can be shown to have equivalent properties to the four listed above.

We begin by selecting from the family U_{a+b+c} or U_d the greatest input u_i, in the preorder \(\succeq\), that satisfies $x_i(u_i) \leq x_i(u_j) - d$ with $J_j \ll J_i$, or simply the greatest input if i has no predecessor. Such an input exists and is unique due to (p.1), (p.2), and can be shown to satisfy (5)-(7). If there is no predecessor we set $u_i = u_i$, otherwise, if a predecessor i exists, $x_i(u_i)$ is tangent to $x_i(u_j) - d$ at some $t \geq 0$ by (p.1)-(p.3) and Proposition 14. In this case we define $u_i(t) = u_i(t)$ up to the time of tangency, and $u_i(t) = u_i(t)$ afterwards. Then, (i) and (ii) are proven by contradiction using (p.4), which implies that if any u_i' is such that $x_i(t,u_i') \geq x(t,u_i')$ for some $t \geq T_i$, such $x(t,u_i')$ must be strictly above

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig6.png}
\caption{The set U_{a+b+c} is the union of three sets of signals sketched in the panels. The dashed horizontal band is the intersection. Different curves within the same set and the corresponding parameters τ_1 and τ_2 are represented in different shades of gray.}
\end{figure}
that $x_j(t, u_j)$ at $t > t'$ and violate (6), while (iii) is a consequence of the construction of \tilde{u}_i.

Proof of Theorem 3: We prove the theorem statement starting from its second part: we consider a vector $u \in \mathcal{U}$ satisfying (9) and we show that such vector is a maximum of $\mathcal{U}(T)$. As a consequence of this, $\mathcal{U}(T)$ has maxima.

We begin by noting that $\mathcal{U}(T) \neq \emptyset$ implies $\mathcal{U} \neq \emptyset$, since $\mathcal{U}(T) \subseteq \mathcal{U}$. It also implies that $\mathcal{U}(\emptyset, T_i) \neq \emptyset$ for all i such that $\emptyset \ll J_i$, and that $\mathcal{U}(u_j(T_i), T_i) \neq \emptyset$ for all i such that $J_j \ll J_i$, provided u_j is the j-th component of an input $u \in \mathcal{U}(T)$. This follows by the fact that each component of $u \in \mathcal{U}(T)$ satisfies constraints (5), (6), (7). Then, by Lemma 2 the sets $\mathcal{U}(\cdot, T_i)$ have maxima and the relation (9) is well defined. Consider a vector u that satisfies (9). Such $u \in \mathcal{U}(T)$, since by construction each of its components satisfies (5) and (6). To show that it is maximal we proceed by contradiction. Assume that there exists a $u \in \mathcal{U}(T)$ such that

$$u \not\leq u.$$

We know that for all i such that $\emptyset \ll J_i$ and for all $u_i \in \mathcal{U}(\emptyset, T_i)$, $u_i \leq_u u_i$. Thus, to have (24) there must exist an i and j such that $J_j \ll J_i$, and for some $u_j \in \mathcal{U}(\emptyset, T_i)$ such that $u_j \leq_u u_j$, for $u_i \in \max_u \mathcal{U}(u_j(T_i))$, and for $u_i \in \mathcal{U}(u_j(T_i), T_i)$, $u_i \leq_u u_i$. This is contradicted by Lemma 2.

APPENDIX B

PROOFS OF SECTION IV

In the proof of Theorem 4 we use the following Corollary of Theorem 3.

Corollary 16. Assume that $\mathcal{U}(T) \neq \emptyset$. Then, $P_i(T) \leq t_{b_i}(u_i)$ for all i and for all $u \in \mathcal{U}(T)$.

Proof: By Theorem 3, if $\mathcal{U}(T) \neq \emptyset$ then it has a maximum u in the preorder \leq_u. Given the definition of the preorder \leq_u, $x_i(t, u_i) \geq x_i(t, u_i)$ for all $u_i \in \mathcal{U}(T)$ and for all $t \geq T_i$, which implies that $t_{b_i}(u_i) = P_i(T) \leq t_{b_i}(u_i)$.

Proof of Theorem 4: We must show that VP is reducible to SP and vice versa, or equivalently that $\{x(0), \tilde{x}(0), \Theta\} \in \mathcal{V} \Leftrightarrow \{x(0), \tilde{x}(0), \Theta\} \in \mathcal{S}$. We prove the two directions of the implication separately.

$$(\{x(0), \tilde{x}(0), \Theta\} \in \mathcal{V} \Rightarrow \{x(0), \tilde{x}(0), \Theta\} \in \mathcal{S})$$: Assume that $\tilde{x}(t, u)$ satisfies the constraints of VP. The time instants at which $\tilde{x}(t, u)$ crosses each of the planes $x_i = a_i$ define a vector T, and we can set $T_0 = 0$ if $x_i(0) > a_i$.

Given this choice of T, $\mathcal{U}(T) \neq \emptyset$, and since $\mathcal{U}(T) \subseteq \mathcal{U}$, $\mathcal{U} \neq \emptyset$, so by Theorem 1 the quantities $x_i(t)$ exist. Moreover, this T satisfies (12) given the definition of R_i and D_i. The time instants at which $\tilde{x}(t, u)$ crosses the planes $x_i = b_i$ define a vector $P = (P_1, \ldots, P_n)$, with $P_i = t_{b_i}(u_i)$, and for all i such that $T_i \geq T_i$, $(i, j) \in T_i$ and $x_i(0) < b_i$, we have $T_i \geq P_i$, otherwise $\tilde{x}(t, u)$ and $\mathcal{U}(T) \subseteq \mathcal{U}$, so we conclude that T satisfies (13).

$$(\{x(0), \tilde{x}(0), \Theta\} \in \mathcal{S} \Rightarrow \{x(0), \tilde{x}(0), \Theta\} \in \mathcal{V})$$: Assume that $\{x(0), \tilde{x}(0), \Theta\} \in \mathcal{S}$, i.e., there exists a schedule T that satisfies SP given $\{x(0), \tilde{x}(0)\}$. In order for any schedule T to satisfy (12), it must be that $\mathcal{U} \neq \emptyset$. If for all $(i, j) \in T_i$, $x_i(0) \geq b_i$ and $x_j(0) \geq b_j$, then any input in \mathcal{U} solves VP. However, instead there exists $x_i(0) < b_i$, in order for the schedule element T_i to satisfy (12) and (13), $P_i(T) \mathcal{U}$ must be finite (since D_i is finite by (A.3)). By the definition of $P_i(T)$, this implies that $\mathcal{U}(T) \neq \emptyset$ and that $t_{b_i}(u_i) = P_i(T)$, where $u \in \max_u \mathcal{U}(T)$. This, together with the fact that all inputs in $\mathcal{U}(T)$ satisfy (5) and (6) and that $\tilde{x}_i(t) > \tilde{x}_{i,m} > 0$ for all t, insures that: (i) if $x_i(t) \leq a_i$, then $x_i(t, u_i) \leq a_i$ for all $t < T_i$, (ii) if $x_i(t) < b_i$ then $x_i(t, u_i) = b_i$ for all $t < P_i(T)$, and (iii) for all $t \geq 0$, $x_i(t, u_i) \leq x_j(t, u_j)$ when $J_j < J_i$. Given (12) and (13) with this input each x_i enters the interval (a_i, b_i) no earlier than T_i, leaves the interval at $P_i(T)$, and the intervals $(T_i, P_i(T))$ and $(T_j, P_j(T))$ with $(i, j) \in T_i$ do not intersect. Thus $x(t, u) \notin B$ for all $t \geq 0$, and u satisfies VP.

Proof of Lemma 5: The property follows from the fact that, if $J_j \ll J_i$, constraint (5), appearing in the definition of P_i, is inactive for all $T \geq T_i$.

Sketch of proof of Theorem 6: The theorem is proven by showing that, for all schedules T that satisfy SP^*, $P_i(T) \leq T_i + \delta_{max}$ for all agents i with $x_i(0) < a_i$. This property ensures that conditions (16)-(20) imply conditions (12) and (13).

To prove the above property, let us number and analyze agents in topological order. Let $\{1, \ldots, m\}$ be all agents such that $x_i(0) \geq a_i$, and let

$$x^*_i := x_i(u_{i,m}, a_i, \tilde{x}_{i,min}),$$

that is, x^*_i is a trajectory of agent i with maximum input, initial position equal to a_i, and initial velocity equal to $\tilde{x}_{i,min}$. If SP^* admits a schedule then $\mathcal{U} \neq \emptyset$, otherwise condition (16) could not be satisfied. Using this fact and Proposition 14 we can construct an input $u \in \mathcal{U}$ of the form

$$u_i(t) = \begin{cases} u_{i,m} & \text{for } t \leq t_1 \\ u_{i,min} & \text{for } t \in [t_1, t_2] \\ u_i & \text{for } t > t_2 \end{cases}$$

with $0 \leq t_1 \leq t_2 \leq \infty$ and $J_j \ll J_i$, such that

$$x_i(t, u_i) \geq x^*_i(t) - a_i + x_i(0) \forall t \geq 0$$

for all $i \in \{1, \ldots, m\}$. Set $u_i(t) = u_{i,m}$ for all t if i has no predecessor. With this input we have $\tau_i(x_i(0)) \geq t_{a_i} + d^*_i(u_i)$ by (25) and $x_i(t) \geq x^*_i(t) + d$ for all $t \geq 0$ and $J_j \gg J_i$ (since $u \in \mathcal{U}$).

Now let $m + 1$ be the first agent in topological order with initial condition $x_{m+1}(0) \leq a_{m+1}$. By (18) and (25) we have

$$x_{m}(t + T_{m+1}, u_{m}) \geq x^*_{m+1}(t) + d^*_m + d$$

for all $t \geq 0$. It can be proved that, if $\mathcal{U} \neq \emptyset$, (26), and T_i satisfies (16) and (18), then there exists an input u_{m+1} of the form

$$u_{m+1}(t) = \begin{cases} u_i & \text{for } t \leq t_1 \\ u_{i,m} & \text{for } t \in [t_1, t_2] \\ u_{i,min} & \text{for } t \in [t_2, t_3] \\ u_j & \text{for } t > t_3 \end{cases}$$
satisfying (5)-(7), as well as (25). This reasoning can be iterated over all agents \(i \in \{m+1, \ldots, n\} \), to construct the remaining entries of the signal \(u \). The resulting unit is \(u \in U(T) \), and by (25) \(\tau(x_i(0)) \geq t_{a_i} + \delta(x_i(0)) \) for all \(i \). Since \(\delta_{\text{max}} + T_\tau \geq \tau_i(x_i(0)) \) and \(P(T) \leq t_{a_i} + \delta(x_i(0)) \), we have that \(P(T) \leq T_i + \delta_{\text{max}} \) for all agents \(i \) with \(x_i(0) > a_i \), as requested.

Proof of Theorem 7: If APPROXIMATEOLUTION returns \textit{"no"} then either \(x_i(0) \in [a_i, b_i] \) and \(x_j(0) \in [a_j, b_j] \) for some \((i, j) \in I_\pi \), or \(D_i \leq R_i \) implying \(U = \emptyset \), or POLYNOMIALTIME at line 11 returns \"no\". In the first case, \(x(0) \in B_\pi = B \). In the second case, for all \(u \in \mathcal{U} \), \(x(t, u) \) intersects \(B_\pi \). In the third case, for any \(u \in U \) the schedule \(T \) defined by \(T_i = t_{a_i}(u) \) satisfies (16) and (20). Since APPROXIMATEOLUTION solves \(\mathcal{SP} \) exactly, and finds no feasible schedule, \(T \) must violate either (17), or (18), or (19). If (17) is violated then \(x_i(t) = a_i \) for some \(t \geq 0 \) and for some \(i \in I \), in which case \(x(t, u) \) intersects \(B_\pi \). If (18) is violated, then \(x_i(t) = a_i \) for some \(t \geq 0 \) and for some \(i \in I \), in which case \(x(t, u) \) intersects \(B_\pi \). If (19) is violated, then \(T_i = T_j < \delta_{\text{max}} \) for some \(i, j \), then \(x_i(t) = a_i \) for some \(t \geq 0 \). This implies that \(x(t, u) \) intersects \(B_\pi \).

Proof of Theorem 8: We prove the theorem by showing that, if \(\gamma \geq 1 \) or \(\gamma \geq 1 \), we can select \(\{0, x(0), \theta\} \) such that APPROXIMATEOLUTION returns \textit{"no"} and construct a trajectory that does not intersect \(B \). Consider first \(\gamma > 1 \). Take a system with two agents on two different paths. Assume \(\gamma_{\text{max}} = \gamma_{\text{min}} = \gamma_0 > 0 \). Let \(x(0) \geq 0 < a_2 \), \(x_1(0) > x_2(0) \), \(x_1(0) = x_2(0) \), \(x_1(0) = x_2(0) \). Select \(x(0) \) and \(x_2(0) \) such that \(t_{a_2}(u_{2\text{min}}) = t_{a_1}(u_{1\text{max}}) = \delta_{\text{max}} - \epsilon \) for some \(\epsilon > 0 \). APPROXIMATEOLUTION returns \textit{"no"}, since \(t_{a_1}(u_{1\text{max}}) = R_1, t_{a_2}(u_{2\text{min}}) = D_2, R_1 < R_2 \), and \(D_1 < D_2 \). Consider the trajectory \(x(t) := (x_1(t), u_{1\text{max}}), x_2(t, u_{2\text{min}}) \). We have \(x(t) \) = \(a_0(\delta_{\text{max}} - \epsilon) \delta_{\text{max}} - \epsilon \) for all \(t \geq 0 \) provided that \(\epsilon \leq 0 \). \(\gamma_{\text{max}}(1 - \gamma_0) \).

Now consider \(\gamma \geq 1 \) and consider the same system as above, with identical parameters but with agents 1 and 2 on the same path. APPROXIMATEOLUTION returns \textit{"no"} for the same reasons as above. Consider the trajectory \(x(t) := (x_1(t, u_{1\text{max}}), x_2(t, u_{2\text{min}})) \). We have \(|x_1(t, u_{1\text{max}}) - x_2(t, u_{2\text{min}})| \geq |x_1(0) - x_2(0)| = \delta_{\text{max}} - \epsilon \delta_{\text{max}} - \delta_{\text{max}} - \delta_{\text{min}}(u_{2\text{min}}) \). Thus, \(x(t) \notin \mathcal{B} \) for all \(t \geq 0 \) provided that \(\epsilon \leq 0 \) and \(\delta_{\text{max}}(1 - \gamma_0) - \delta_{\text{min}}(u_{2\text{min}}) \).

APPENDIX C PROOFS OF SECTION V

Sketch of proof of Proposition 9: Nonblockingness follows from the associative property of the flow action: if at time \(k \), \(x \) is in a trajectory \(T \) that does not intersect \(B \), then \(x \) is in a trajectory that is followed for a time \(\tau \), then the same trajectory is available at time \((k+1) \tau \).

Proof of Theorem 10: This follows from the equivalence of VP and SP.

Sketch of proof of Theorem 11: That \(s(x,k) \leq s(x,k) \) is no more restrictive than \(s(x,k), x, k) \) is a consequence of Theorem 7. Nonblockingness is proved by observing that, at iteration \(k \), line 6 of Algorithm 4 explicitly checks the existence of a collision-free input for iteration \(k+1 \). Thus the only way that the algorithm could block is when the test at line 6 fails, the algorithm executes the code from line 8, and line 9 does not return a feasible schedule. This never happens for the following reason. If at iteration \(k \) the desired input was accepted (i.e. the test at line 6 didn’t fail), then existence of a feasible schedule has already been verified. Otherwise at iteration \(k \) agents have been forced to use input \(u_{k-1}, s_{\text{safe}} \). Given the trajectory \(x(t, u_{k-1}), s_{\text{safe}} \), \(T_{k-1} \) be the vector of times at which agents starting at \(x(k-1) \) enter the intersection, with \(T_{k-1} = 0 \) if \(x(k-1) \geq a_i \). Let \(T_k \) be the same vector computed from \(x(k), u_{k\text{safe}} \). One can check that if \(T_{k-1} \) satisfies (16)-(20) then so does \(T_k \), therefore line 9 always finds a feasible schedule.

ACKNOWLEDGMENT

This work was supported by the NSF Award # CNS 0930081.

REFERENCES

A. Girard, C. L. Guernic, and O. Maler, “Efficient computation of
A. Colombo and D. Del Vecchio, “Enforcing safety of cyberphysical
F. Fadaie and M. E. Broucke, “On the least restrictive control for
R. Verma and D. Del Vecchio, “Semiautonomous multivehicle safety: A
C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi, “Computational
A. Vela, E. Salaun, E. Feron, W. Singhose, and J.-P. Clarke, “Bounds on
collision avoidance of two unicycles,” Int. J. Robust Nonlinear Control,
L. Bruni, A. Colombo, and D. Del Vecchio, “Robust multi-agent col-
H. Kowshik, D. Caveney, and P. R. Kumar, “Provable systemwide safety
M. Prandini, V. Putta, and J. Hu, “Air traffic complexity in future air
unit-time tasks with arbitrary release times and deadlines,” SIAM J.
B. A. Davey and H. A. Priestley, Introduction to Lattices and Order.
A. Bicchi and L. Pallottino, “On optimal cooperative collision resolution
A. Richards, T. Schouwenaars, J. P. How, and E. Feron, “Spacecraft
trajectory planning with avoidance constraints using mixed-integer linear
flows using heading-change maneuvers for conflict avoidance,” IEEE Trans.
M. A. Christodoulou and S. G. Kodaxakis, “Automatic commercial
crash-avoidance controller taskload ratings at an intersection for dense traffic,” in American
Control Conference, 2011.
A. Vela, E. Salaun, E. Feron, W. Singhose, and J.-P. Clarke, “Bounds on
targets at an intersection for dense traffic,” in American
Control Conference, 2011.
G. R. de Campos, P. Falcone, and J. Sjöberg, “Autonomous cooperative
driving: a flexibility-based negotiation approach for intersections cross-
M. Prandini, J. Hu, J. Lygeros, and S. Sastry, “A probabilistic approach to
collision avoidance of a HMMWV for an ITS testbed,” IEEE Trans.
L. Pallottino, V. G. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized
H. Kowshik, D. Caveney, and P. R. Kumar, “Provable systemwide safety
A. Vela, E. Salaun, E. Feron, W. Singhose, and J.-P. Clarke, “Bounds on
targets at an intersection for dense traffic,” in American
Control Conference, 2011.
G. R. de Campos, P. Falcone, and J. Sjöberg, “Autonomous cooperative
driving: a flexibility-based negotiation approach for intersections cross-
M. Prandini, J. Hu, J. Lygeros, and S. Sastry, “A probabilistic approach to
collision avoidance of a HMMWV for an ITS testbed,” IEEE Trans.
M. Prandini and J. Hu, “Application of reachability analysis for stochas-
tic hybrid systems to aircraft collision prediction,” IEEE Trans. Automa-

Alessandro Colombo received the Diplôme D’Ingénieur from ENSTA in Paris in 2005, and the Ph.D. from Politecnico di Milano in 2009. He was Postdoctoral Associate at the Massachusetts Institute of Technol-
y in 2010-2012, and he is currently Assistant Pro-
fessor at the Department of Electronics, Information
and Bioengineering at Politecnico di Milano. His
research interests are in the analysis and control of
discontinuous and hybrid systems with applications,
among others, to transportation networks.

Domiitlla Del Vecchio received the Ph. D. degree in
Control and Dynamical Systems from the California
Institute of Technology, Pasadena, and the Laurea
degree in Electrical Engineering from the University
of Rome at Tor Vergata in 2005 and 1999, respec-
tively. From 2006 to 2010, she was an Assistant Pro-
fessor in the Department of Electrical Engineer-
ing and Computer Science and in the Center for
Computational Medicine and Bioinformatics at the University of Michigan, Ann Arbor. In 2010, she
joined the Department of Mechanical Engineering at
the Massachusetts Institute of Technology (MIT), where she is currently an Associate Professor. She is a recipient of the Donald P. Eckman Award from the American Automatic Control Council (2010), the NSF Career Award (2007), the Crosby Award, University of Michigan (2007), the American Control Conference Best Student Paper Award (2004), and the Bank of Italy Fellowship (2000). Her research interests include analysis and control of
hybrid systems with application to bio-molecular networks and
transportation networks.